Scope without Syntax Towards a Game Theoretic Approach

Luke Smith

Department of Linguistics

April 19, 2016

• Languages have what are called *quantifiers*, which are words which delineate particular quantities of nouns that they modify.

- Languages have what are called *quantifiers*, which are words which delineate particular quantities of nouns that they modify.
 - ▶ Universal quantifiers all, each, every (\forall)

- Languages have what are called *quantifiers*, which are words which delineate particular quantities of nouns that they modify.
 - ▶ Universal quantifiers all, each, every (∀)
 - **Existential quantifiers** a, one, some (\exists)

- Languages have what are called *quantifiers*, which are words which delineate particular quantities of nouns that they modify.
 - ▶ Universal quantifiers all, each, every (∀)
 - **Existential quantifiers** a, one, some (∃)
 - Negation not, no (¬)

- Languages have what are called *quantifiers*, which are words which delineate particular quantities of nouns that they modify.
 - ▶ Universal quantifiers all, each, every (∀)
 - **Existential quantifiers** a, one, some (\exists)
 - Negation not, no (¬)
 - ▶ Many others numerals, much, many, few, etc.

- Languages have what are called *quantifiers*, which are words which delineate particular quantities of nouns that they modify.
 - ▶ Universal quantifiers all, each, every (∀)
 - Existential quantifiers a, one, some (∃)
 - ▶ **Negation** not, no (\neg)
 - ► Many others numerals, much, many, few, etc.
- For the purposes of sentence interpretation, quantifiers are quite a puzzle. Especially when there are multiple quantifiers in a sentence, a sentence may become ambiguous.

(1) Everyone loves someone.

- (1) Everyone loves someone.
- This sentence has two quantifiers, a universal (\forall) 'every' and an existential (\exists) 'some.'

- (1) Everyone loves someone.
- This sentence has two quantifiers, a universal (∀) 'every' and an existential (∃) 'some.'
- This sentence has two different interpretations:

- (1) Everyone loves someone.
- This sentence has two quantifiers, a universal (∀) 'every' and an existential (∃) 'some.'
- This sentence has two different interpretations:
 - ► For each person, there exists some other person they love.

- (1) Everyone loves someone.
- This sentence has two quantifiers, a universal (∀) 'every' and an existential (∃) 'some.'
- This sentence has two different interpretations:
 - ► For each person, there exists some other person they love.
 - ► There exists one particular person who everyone loves.
- In the first possible reading, we say that the ∀ takes 'wide scope' over the ∃, which is said to have 'narrow scope.'

- (1) Everyone loves someone.
- This sentence has two quantifiers, a universal (∀) 'every' and an existential (∃) 'some.'
- This sentence has two different interpretations:
 - For each person, there exists some other person they love.
 - ► There exists one particular person who everyone loves.
- In the first possible reading, we say that the ∀ takes 'wide scope' over the ∃, which is said to have 'narrow scope.'
- In the second, we say that the \exists takes wide scope over the \forall .

 Scope was traditionally dealt with in terms of 'movement' and 'logical form.' An ambiguous sentence had to go through some kind of post-syntactic change to yield an unambiguous representation in the mind.

- Scope was traditionally dealt with in terms of 'movement' and 'logical form.' An ambiguous sentence had to go through some kind of post-syntactic change to yield an unambiguous representation in the mind.
- Different languages were discovered to have different availabilities of scope ambiguity. This was dealt with with formal and syntactic changes.

- Scope was traditionally dealt with in terms of 'movement' and 'logical form.' An ambiguous sentence had to go through some kind of post-syntactic change to yield an unambiguous representation in the mind.
- Different languages were discovered to have different availabilities of scope ambiguity. This was dealt with with formal and syntactic changes.
- Not so important to go into because basically nothing worked across wide data sets.

- Scope was traditionally dealt with in terms of 'movement' and 'logical form.' An ambiguous sentence had to go through some kind of post-syntactic change to yield an unambiguous representation in the mind.
- Different languages were discovered to have different availabilities of scope ambiguity. This was dealt with with formal and syntactic changes.
- Not so important to go into because basically nothing worked across wide data sets.
- Scope ambiguity is difficult to account for because it is:

- Scope was traditionally dealt with in terms of 'movement' and 'logical form.' An ambiguous sentence had to go through some kind of post-syntactic change to yield an unambiguous representation in the mind.
- Different languages were discovered to have different availabilities of scope ambiguity. This was dealt with with formal and syntactic changes.
- Not so important to go into because basically nothing worked across wide data sets.
- Scope ambiguity is difficult to account for because it is:
 - Highly context sensitive

- Scope was traditionally dealt with in terms of 'movement' and 'logical form.' An ambiguous sentence had to go through some kind of post-syntactic change to yield an unambiguous representation in the mind.
- Different languages were discovered to have different availabilities of scope ambiguity. This was dealt with with formal and syntactic changes.
- Not so important to go into because basically nothing worked across wide data sets.
- Scope ambiguity is difficult to account for because it is:
 - Highly context sensitive
 - Sensitive to linear order

• My statement: Scope ambiguity is totally paralinguistic. Scope ambiguities fall out from listeners' evaluation of the intentions of the speaker.

- My statement: Scope ambiguity is totally paralinguistic. Scope ambiguities fall out from listeners' evaluation of the intentions of the speaker.
- This can partially be modeled in Game Theory, seeing that speakers are mutually evaluating the others' behavior and choosing how to word or interpret sentences based on that.

- My statement: Scope ambiguity is totally paralinguistic. Scope ambiguities fall out from listeners' evaluation of the intentions of the speaker.
- This can partially be modeled in Game Theory, seeing that speakers are mutually evaluating the others' behavior and choosing how to word or interpret sentences based on that.
- This can allow us to formally analyze an apparent "functional" alternation.

 Game Theory has been similarly employed in linguistics, particularly semantics to deal with implicatures.

- Game Theory has been similarly employed in linguistics, particularly semantics to deal with implicatures.
 - (2) Billy ate most of the chocolates.

- Game Theory has been similarly employed in linguistics, particularly semantics to deal with implicatures.
 - (2) Billy ate most of the chocolates.
- Sentences like this in actual language are inferred to mean that Billy ate most but not all chocolates, although the sentence is logically still true if he did.

- Game Theory has been similarly employed in linguistics, particularly semantics to deal with implicatures.
 - (2) Billy ate most of the chocolates.
- Sentences like this in actual language are inferred to mean that Billy ate most but not all chocolates, although the sentence is logically still true if he did.
- However speakers assume Billy didn't eat all the chocolates because if that were true, a speaker probably would've said so.

• It is generally preferable if quantifiers occur in the order they are supposed to be interpreted in (surface scope).

- It is generally preferable if quantifiers occur in the order they are supposed to be interpreted in (surface scope).
- Moving around nouns via 'transformations' (passivization, clefting, etc.) is costly/marked/undesirable.

- It is generally preferable if quantifiers occur in the order they are supposed to be interpreted in (surface scope).
- Moving around nouns via 'transformations' (passivization, clefting, etc.) is costly/marked/undesirable.
- Scrambling (to be discussed later), as opposed to transformations are not similarly costly.

English Data

English Data

 Typical English sentences show scope ambiguity if there is more than one quantifier:

- Typical English sentences show scope ambiguity if there is more than one quantifier:
 - (3) Two men dug each hole.

- Typical English sentences show scope ambiguity if there is more than one quantifier:
 - (3) Two men dug each hole.
- There can be two particular men who dig all the holes $(\exists > \forall)$ or, each hole can be dug by a different pair of men $(\forall > \exists)$.

- Typical English sentences show scope ambiguity if there is more than one quantifier:
 - (3) Two men dug each hole.
- There can be two particular men who dig all the holes $(\exists > \forall)$ or, each hole can be dug by a different pair of men $(\forall > \exists)$.
- Ambiguity will usually disappear or become highly dispreferred if the sentence undergoes a 'transformation:'

- Typical English sentences show scope ambiguity if there is more than one quantifier:
 - (3) Two men dug each hole.
- There can be two particular men who dig all the holes $(\exists > \forall)$ or, each hole can be dug by a different pair of men $(\forall > \exists)$.
- Ambiguity will usually disappear or become highly dispreferred if the sentence undergoes a 'transformation:'
 - (4) Each hole was dug by two men.

- Typical English sentences show scope ambiguity if there is more than one quantifier:
 - (3) Two men dug each hole.
- There can be two particular men who dig all the holes $(\exists > \forall)$ or, each hole can be dug by a different pair of men $(\forall > \exists)$.
- Ambiguity will usually disappear or become highly dispreferred if the sentence undergoes a 'transformation:'
 - (4) Each hole was dug by two men.
- Here, the strongly preferred reading is the one where there is a pair of men for each hole ($\forall > \exists$), while the case where there is two specific men for each hole is harder to get out of the blue.

(5) Everyone loves someone.

- (5) Everyone loves someone.
- (6) Everyone loves someone, and that person is Billy.

- (5) Everyone loves someone.
- (6) Everyone loves someone, and that person is Billy.
- (7) Everyone loves someone. Don't pretend like you don't have someone special.

- (5) Everyone loves someone.
- (6) Everyone loves someone, and that person is Billy.
- (7) Everyone loves someone. Don't pretend like you don't have someone special.
- (8) Someone is loved by everyone.

- (5) Everyone loves someone.
- (6) Everyone loves someone, and that person is Billy.
- (7) Everyone loves someone. Don't pretend like you don't have someone special.
- (8) Someone is loved by everyone.
- (9) Someone is loved by everyone, and that person is Billy.

- (5) Everyone loves someone.
- (6) Everyone loves someone, and that person is Billy.
- (7) Everyone loves someone. Don't pretend like you don't have someone special.
- (8) Someone is loved by everyone.
- (9) Someone is loved by everyone, and that person is Billy.
- (10) ?? Someone is loved by everyone. Don't pretend like you don't have someone special.

 English has relatively rigid word order (subject-verb-object), but many languages have what is called 'scrambling' which is free linear movement of nouns without the cost of transformations.

- English has relatively rigid word order (subject-verb-object), but many languages have what is called 'scrambling' which is free linear movement of nouns without the cost of transformations.
- Scope is systematically different in languages like these.

- English has relatively rigid word order (subject-verb-object), but many languages have what is called 'scrambling' which is free linear movement of nouns without the cost of transformations.
- Scope is systematically different in languages like these.
- (11) Har d\u00e4neshjui yek kit\u00e4bi-r\u00e4 mixune. all student a book-OBJ reads "Every student is reading a book."

- English has relatively rigid word order (subject-verb-object), but many languages have what is called 'scrambling' which is free linear movement of nouns without the cost of transformations.
- Scope is systematically different in languages like these.
- (11) Har d\u00e4neshjui yek kit\u00e4bi-r\u00e4 mixune. all student a book-OBJ reads "Every student is reading a book."
- (12) Yek kitābi-rā har dāneshjui mixune. a book-OBJ all student reads "Every student is reading a book."

- English has relatively rigid word order (subject-verb-object), but many languages have what is called 'scrambling' which is free linear movement of nouns without the cost of transformations.
- Scope is systematically different in languages like these.
- (11) Har d\u00e4neshjui yek kit\u00e4bi-r\u00e4 mixune. all student a book-OBJ reads "Every student is reading a book."
- (12) Yek kitābi-rā har dāneshjui mixune. a book-OBJ all student reads "Every student is reading a book."
 - However, both of these sentences must have surface scope. They cannot be ambiguous.

A Game Theoretic Account

A Game Theoretic Account

 Given our previous suggested constraints, we can predict these scope availabilities.

A Game Theoretic Account

- Given our previous suggested constraints, we can predict these scope availabilities.
- Remember, surface scope is preferred and transformations are costly.

In an English-like language...

In an English-like language...

• As assumed speakers want to interpret quantifiers in linear order.

In an English-like language. . .

- As assumed speakers want to interpret quantifiers in linear order.
- When a speaker produces a costly transformation (like a passive) the listener assumes that the new surface word order is the intended scope order.

In an English-like language...

- As assumed speakers want to interpret quantifiers in linear order.
- When a speaker produces a costly transformation (like a passive) the listener assumes that the new surface word order is the intended scope order.
- If a speaker produces an untransformed sentence, the listener has two possible hypotheses: (1) the speaker intended surface scope, or (2) that the speaker intended inverse scope, but didn't want to undergo a costly transformation.

In an English-like language...

- As assumed speakers want to interpret quantifiers in linear order.
- When a speaker produces a costly transformation (like a passive) the listener assumes that the new surface word order is the intended scope order.
- If a speaker produces an untransformed sentence, the listener has two possible hypotheses: (1) the speaker intended surface scope, or (2) that the speaker intended inverse scope, but didn't want to undergo a costly transformation.
- These two possibilities produce scope ambiguity.

• In scrambling languages, since speakers have greater flexibility in ordering, listeners make different assumptions about intended scope.

- In scrambling languages, since speakers have greater flexibility in ordering, listeners make different assumptions about intended scope.
- If the speaker wants the object to scope over the subject, he can easily scramble it leftward.

- In scrambling languages, since speakers have greater flexibility in ordering, listeners make different assumptions about intended scope.
- If the speaker wants the object to scope over the subject, he can easily scramble it leftward.
- Since he can do this, the unscrambled sentence has an unambiguous surface scope interpretation.

- In scrambling languages, since speakers have greater flexibility in ordering, listeners make different assumptions about intended scope.
- If the speaker wants the object to scope over the subject, he can easily scramble it leftward.
- Since he can do this, the unscrambled sentence has an unambiguous surface scope interpretation.
- **Sidenote:** Potentially related, languages with scrambling/flexible word order, usually rely on things like passivization less often.

 In addition to this correlation between rigid word-order and scrambling languages, we see that this theory still hold in rigid constructions in scrambling languages.

- In addition to this correlation between rigid word-order and scrambling languages, we see that this theory still hold in rigid constructions in scrambling languages.
- In Persian, for example, although nouns are flexible, negation must always be on the same part of a verb.

- In addition to this correlation between rigid word-order and scrambling languages, we see that this theory still hold in rigid constructions in scrambling languages.
- In Persian, for example, although nouns are flexible, negation must always be on the same part of a verb.
- We should expect negative quantifiers to work similar to English sentences in that they produce ambiguity. This is the case:

- In addition to this correlation between rigid word-order and scrambling languages, we see that this theory still hold in rigid constructions in scrambling languages.
- In Persian, for example, although nouns are flexible, negation must always be on the same part of a verb.
- We should expect negative quantifiers to work similar to English sentences in that they produce ambiguity. This is the case:
 - (13) Billy yek kitābi-rā na-xand.
 Billy a book-OBJ not-read
 "Billy didn't read a (particular) book." (∃ > ¬)or "Billy didn't read any book." (¬ > ∃)

- In addition to this correlation between rigid word-order and scrambling languages, we see that this theory still hold in rigid constructions in scrambling languages.
- In Persian, for example, although nouns are flexible, negation must always be on the same part of a verb.
- We should expect negative quantifiers to work similar to English sentences in that they produce ambiguity. This is the case:
 - (13) Billy yek kitābi-rā na-xand. Billy a book-OBJ not-read "Billy didn't read a (particular) book." $(\exists > \neg)$ or "Billy didn't read any book." $(\neg > \exists)$
- This holds in similar languages with scrambling and stable negation location (e.g. Korean).

• One of the more tricky aspects of formal linguistics can be dealt with implicatures that can be modeled Game Theoretically.

- One of the more tricky aspects of formal linguistics can be dealt with implicatures that can be modeled Game Theoretically.
- Main benefits:

- One of the more tricky aspects of formal linguistics can be dealt with implicatures that can be modeled Game Theoretically.
- Main benefits:
 - ► Accounts for the ubiquitous linear ordering problem.

- One of the more tricky aspects of formal linguistics can be dealt with implicatures that can be modeled Game Theoretically.
- Main benefits:
 - Accounts for the ubiquitous linear ordering problem.
 - Makes logical form and other linguistic representations dealing with scope theoretically unnecessary (eye toward Minimalism).

- One of the more tricky aspects of formal linguistics can be dealt with implicatures that can be modeled Game Theoretically.
- Main benefits:
 - Accounts for the ubiquitous linear ordering problem.
 - Makes logical form and other linguistic representations dealing with scope theoretically unnecessary (eye toward Minimalism).
- General project goals:

- One of the more tricky aspects of formal linguistics can be dealt with implicatures that can be modeled Game Theoretically.
- Main benefits:
 - Accounts for the ubiquitous linear ordering problem.
 - Makes logical form and other linguistic representations dealing with scope theoretically unnecessary (eye toward Minimalism).
- General project goals:
 - Formalize key examples.

- One of the more tricky aspects of formal linguistics can be dealt with implicatures that can be modeled Game Theoretically.
- Main benefits:
 - Accounts for the ubiquitous linear ordering problem.
 - Makes logical form and other linguistic representations dealing with scope theoretically unnecessary (eye toward Minimalism).
- General project goals:
 - Formalize key examples.
 - ▶ See how many constructions in how many languages and constructions this can work on.

- One of the more tricky aspects of formal linguistics can be dealt with implicatures that can be modeled Game Theoretically.
- Main benefits:
 - Accounts for the ubiquitous linear ordering problem.
 - Makes logical form and other linguistic representations dealing with scope theoretically unnecessary (eye toward Minimalism).
- General project goals:
 - Formalize key examples.
 - ▶ See how many constructions in how many languages and constructions this can work on.
 - Motivate any apparent exceptions.